Tough Medicine for the Dot-Com Culture

Conquering the anarchy that plagued so many failed start-ups

David Ruble
Vice President & Chief Methodologist
November, 2000

A,
A®L

A€

Olympic Consulting Group

P.O. Box 4008 — Federal Way, WA 98063
(253) 946-2690
www.ocgworld.com

Your experiences and opinions are important to us at OCG.
After reading this paper, please feel free to email the author at:
david.ruble@ocgworld.com

© 2000, Olympic Consulting Group. All rights reserved. Page 1 of 1

http://www.ocgworld.com/
mailto:david.ruble@ocgworld.com

Tough Medicine for the Dot-Com Culture

Conquering the anarchy that plagued so many failed start-ups

David Ruble
Olympic Consulting Group
November, 2000

A colleague once described his first day consulting at a dot-com company like walking into a frat party.
Expensively-coiffed generation-X ladies (must be from marketing) mingled in the crowded hallways with a
gang of post-grunge T-shirts, tattoos and slept-in-them gym shorts guys (must be from development). The
Foosball table clattered above the din, as an errant Nerf dart whizzed past his head. A voice shouted that
the network was down, and an impromptu meeting that was clogging the kitchen dispersed as everyone’s
pagers and cell phones seemed to go off at once.

Meanwhile, a minor herd of program managers argued with a gaggle of engineers over who which group
had properly booked the only meeting room. Neither prevailed, as someone from management
commandeered the room and skillfully guided a knot of potential investors into the glass chamber and
closed the door. The door flew open again, as a harried VP quickly borrowed a chair from the nearest
unoccupied cubicle — leaving the cubicle’s programmer/occupant to stand when he returned from the
bathroom. He scooted his CPU out from under the table, straddled it like a true PC cowboy, and resumed
coding.

Sound like chaos? Certainly! This was the cultural antithesis of the software development shops of large
industrial manufacturing firms to which many of us had become accustomed. There’s a certain amount of
excitement that can be generated working in a fast-paced and fluid environment. There comes a point,
however, where the fluidity, ambiguity and continuous multi-tasking begins to mask a pathological lack of
direction, purpose and process. People are very, very busy — there’s a heck of a lot activity, but is anything
really getting done? And how can anyone think in all of this noise?

Now that the bubble has burst on lavish funding for dot-com enterprises, it’s time to take stock of the
situation and examine what went right and what went wrong in some of these endeavors. The next wave of
Internet ventures will need to be more nimble, efficient, economical and effective than their wild
pioneering predecessors.

What follows are some of the major problems that my colleagues and I have observed amongst the various
dot-com companies we have encountered. Associated with each problem, I suggest a form of remediation.

Problem 1: Viewing the site as a collection of web pages, rather than a complex suite of applications.

A dot-com company is soft. There’s no brick and mortar to visit and no tires to kick. The success of the
operation hinges on the software’s ability to function properly, to entice buyers, fulfill orders and bill
customers. One of the most dangerous tar pits that dot-com management can fall into is the belief that their
site is simply a bunch of web pages. This HTML-centric view of the business focuses business leadership
on branding, messaging and content management. They come to view their software as a collection of flat
pages, which exist to enumerate a set of ever expanding features — rather than see their software as a
complex and inter-dependent suite of business applications that just happen to have a public-facing
browser.

What is the root cause of this bias? In many of the dot-com firms we have encountered, the initial focus
has been on customer acquisition, or market share. Market share in the dot-com space is often measured in
terms of “number of registered users” or subscribers, and not necessarily on sales transaction volume or
value. In these types of cases, the management focus is on increasing the number of visitors — which can
be done with enticing content, marketing and promotions. Thus, dot-com management teams have been
laden with idea people — original entrepreneurs and people with an eye on marketing, finance and funding.
What’s often missing from the team in this “new economy” is a role that’s far less glamorous, but one that
should not be overlooked. Someone in the top ranks needs to have a firm grasp of the technological

© 2000, Olympic Consulting Group. All rights reserved. Page 2 of 2

architecture and operational underpinnings that it takes to operate serious large scale supply chains, and
enterprise-wide integrated systems. The application software behind the glitzy site is often very traditional
— not too exciting, but enormously important to delivering on the value proposition that attracted customers
in the first place.

Time and again, we’ve seen people promoted to positions within start-ups that are far beyond their realm of
expertise, often as a reward for being part of the original “gang” that started the firm. The problem is that
no member of the original “gang” may have had technical skills beyond setting up a basic web site. It is no
wonder that Venture Capital Groups and e-commerce firms are starting to raid the CIO ranks of very
traditional brick-and-mortar firms — who have been dealing with ERP systems (Enterprise Resource
Planning), Supply Chain Management and large-scale integration issues for years. It is precisely this type
of background that a dot-com company needs on its technology management team. The issues of large-
scale application architecture and integration take years to master. The web environment adds a layer of
complexity, and an immature technical environment, over the top of formidable, existing inter-enterprise
communication challenges. To compound the issue, most dot-com firms cannot assume that they have the
luxury of time on their side to risk allowing someone to “grow into the job.”

Bottom line: Hire or acquire a pro. Get somebody that has actually integrated large-scale applications
within and between organizations. You may not be able to find a CIO who has implemented a complete
supply chain via XML technology — but at the management level, a CIO who has successfully integrated
vendors and customers using EDI technology has conquered most of the technical and organizational
hurdles they will face.

Problem 2: Too many people, too little process

The rash of recent dot-com layoffs is beginning to mitigate the rampant over-hiring that occurred in 1999 —
2000. However, I think it important to look at the factors that led to hiring too many people in the first
place. It’s not just a case of, “We had the money so why not?” It’s far more complex than that.

Inexperience. The tendency to hire young people with little or no prior experience was overwhelming.
There was a sense of euphoria that this new generation of technologist was somehow smarter and faster
than the last. Plus — people that are unsaddled with the demands of home and family are more opt to work
long hours and work for less money than those with a mortgage and mouths to feed. On the surface this
makes perfect sense. “We need to find people who will work 7x24 until our site clobbers the competition.
When we do, we’ll reward them with fabulous stock options and they’ll be rich before age 30.” Some start-
ups danced around the issue of age-discrimination. Others were blatant about it. A forty-something
marketing executive, eminently qualified for a position, was turned down by a 20-something recruiter who
said, “Lady, you’re too old.”

A serious ossification of this trend took root in the HR department of many dot-com companies when they
established fixed pay grades for potential new recruits that were often 20% below market rate — and often
targeted at entry-level pay scales to begin with. The candidate would have to be willing to trade cash on
the barrel today for a shot at riches tomorrow. Youth and exuberance showed up in droves. In many cases,
seasoned software professionals stayed away.

Prior to the meltdown of the NASDAQ in the spring of 2000, the generational euphoria of having created a
“new economy” was palpable inside the dot-coms. When our firm was brought in to teach object-oriented
analysis and design to developers and program managers, we were told to compress the duration of the
already-aggressive curriculum by half. “Our people are smarter and faster.” The lofty height of the stock
price seemed to convince them that the normal human bell curve didn’t apply to the intelligence quotient of
this select population. To be sure, we encountered some very smart people — most of whom had a shocking
lack of prior exposure to the basic underpinnings of the body of knowledge that has been amassed in the
software engineering industry over the last thirty years.

On the first day of class, I always ask my students to tell me about their prior software engineering
exposure or experience so I know how to pace the course. I was accustomed to having a smattering of

© 2000, Olympic Consulting Group. All rights reserved. Page 3 of 3

entry-level programmers in my classes at more traditional firms. In the dot-com world, however, 1 was
struck by the number of people with little or no experience being placed in positions of authority. Take
these responses, for example:

“I’'m a development lead in the interface group. I’ve been coding for fourteen months. Prior to
that I was in a rock band.”

“I’m a senior programmer/analyst. I’ve been here for six months. Prior to that I was selling jeans
at the mall.”

“I’m a program manager. [’m in charge of defining requirements for the live site. I have no prior
online retailing or software experience. My background is in clinical pathology, but a friend
talked me into coming here, and it sounded like fun.”

Nothing against rock bands — I was even in one once. However, the experience did not prepare me for
engineering quality software. (I got good at dodging flying beer cans, but couldn’t create a class model to
save my life). To be fair, there were plenty of experienced people in the dot-com organizations we
encountered. However, you can probably guess what their days consisted of — putting out the fires.
“We’ve got a lot of kids running around here with lit matches,” said one very talented software architect.
Another one of the more experienced developers spent his time recoding areas of the application that were
discovered to be botched-up affer the code went live. Rather than devote this kind of talent to up-front
design, they were forced to use him post-production just to keep the site running.

Lack of process. In many dot-coms, there has been little or no defined process for producing software.
Process includes writing things down and communicating effectively between the diverse groups (program
managers, analysts, designers, developers, testers) who must collaborate to produce the product. If nothing
is written down, then the process becomes verbal. Like the prehistoric societies that subsided without
benefit of the written word, many dot-coms cultures, by design or by accident, flourished simply by
cramming all members of the society into the same cave. Proximity takes the place of process whereby
immediate and constant verbal communication supplants written communication — hence, the cramped
quarters and no-cubicles environment actually serves a purpose. It partially makes up for the absence of
process. The problem is that it won’t scale up. The cave may pass as a functional society with 50
occupants, but not with 500. To make matters worse, the propensity to add headcount in this environment
escalates. Here’s why:

In one dot-com we observed, management demanded new features be added to the site every two weeks.
Any project manager knows that the three sides of the resource triangle: Time, resources and functionality
(or quality). If you affix the time and functionality, you can only vary one thing: resources, and since
nobody measured the actual amount of human effort it took to produce software, there was no penalty for
simply adding more people. After all — a start-up wants to “look big” to Wall Street.

Somebody should have slipped management a copy of “The Mythical Man Month.” You can’t take nine
women and make a baby in one month. There comes a point in any project where you have too many
people and their inability to effectively communicate creates absolute gridlock. And gridlock is what many
of these firms got.

Conway’s Law states: “The structure of a software application mirrors the structure of the organization
that built it.” The anarchy of the organization is passed directly into the software. A colleague of mine
described one dot-com’s software architecture as a “fractal” — “It’s an absolute mess at any level of
magnification!” The result was fragile and rickety application code, an undocumented and disorganized
database with rampant redundancy and errors, and the inability to integrate with third party packages to
deliver to customers the very value proposition the site infers.

Bottom Line: Look at each of the various groups that it takes to run a successful e-commerce business and
ask yourself, “Which of these functions really benefits from being run like frat-house?” There may be
areas of the business where wild and unbridled creativity should be encouraged. Then ask yourself,

© 2000, Olympic Consulting Group. All rights reserved. Page 4 of 4

“Which of these functions benefit from being run like a sober, traditional software shop?” You will find
that many of the core integration tasks, database design and administration, network operations, and
enterprise architecture are severely imperiled by anarchy — and should operated as serious engineering
disciplines.

As for lack of experience — the HR department should throw out the pay scale sheet. Instead hiring ten
inexpensive programmers with little or no large-application experience, hire several highly experienced
developers and pay them what they’re worth. Put promising young talent in entry-level positions where
they are encouraged to explore new ideas, but are also exposed to the discipline and mentorship of people
who have mastered solutions to large-scale problems. Where you can’t hire qualified employees, bring in
experienced consultants. In the end, you’ll spend less money and have better software.

Problem 3: “Time to market” thwarts all other objectives

Throughout the first wave of Internet start-ups, “time to market” was everything. The conventional
wisdom was, “There’s no time to do it right, because we’ll be out of business if we don’t get the software
done yesterday!” In a cutthroat competitive environment, the pressure to rush to code at break-neck speed
has always been at odds with software quality.

Software projects, like any other projects, must have a set of underlying objectives — often multiple (and
sometimes conflicting) objectives. To achieve one specific objective, the project team may vary the degree
to which they meet the others.

Take two conflicting objectives: (1) Time to market, and (2) Scalability and Extensibility. It conceivably
takes longer to create a software project that is well engineered, scalable and extensible than it does to
simply meet the functional requirements and push it out the door. The overwhelming pressure placed by
financial backers upon public-facing Internet sites to “go live” often sweeps aside all other considerations
for the future architectural welfare of the site.

The risk to the architecture, of course, is that the venture actually becomes successful, and the technology is
unable to support it. The examples of the after-effects of placing time-to-market above all else are
numerous. Here’s a sampling of just some of the major issues plaguing dot-coms who are struggling to
overcome this legacy:

Sites which cannot be effectively partitioned, therefore, changes to any sub-section of the site
requires a complete redeployment of the entire site, which requires complete regression testing,
and risks “build” errors being introduced into untouched sections of code.

Redundant code, whereby more than one module or routine has been created that executes the
same essential function. For example, the function that calculates an order’s price and total is
coded separately on the shopping cart, the pre-authorization of credit cards, which is again
different than the code that does billing. The result is inconsistencies and errors, which become
exposed to the customer.

Code, which has not been “designed” per se, so there has been little thought given to reuse —
which could speed subsequent development.

Hastily designed data schemas, which ultimately fall victim to rampant redundancy, errors and
make poor use of optimization and query tools that come with the database management system.

Lack of documentation — which creates havoc in an environment of high turnover. In the absence
of any documentation, each new developer has to rediscover what is there, or often simply creates
new code, rather than take the time to reuse existing. Despite the obvious inefficiencies, this code
tends to become very fragile and breaks easily every time it’s touched.

© 2000, Olympic Consulting Group. All rights reserved. Page 5 of 5

The lack of analysis, design or “as built” documentation creates a bottleneck on the developer —
who is burdened with not only creating the application, but also must design it, and re-analyze ill-
defined requirements, and fill in large gaps in the requirements as well. This type activity cannot
be partitioned effectively across multiple developers, and thus creates a severe dependency on the
developer who must upload all of the requirements and understanding into his head in order to
create the software.

Bottom Line: Now that the gold rush to IPO has slowed down, firms will take a second look at building
robust software that works — especially now that the bricks-and-clicks firms are re-emerging as serious e-
retailers — backed by the on-going cash flow and existing infrastructure that allows them to take their time.

Problem 4: Lack of direction, focus or vision

From a software engineering standpoint — this problem is the hardest to control. As dot-com companies
were buffeted on the waves of the stock price storm, many of them continued to shift gears, change focus
and direction — looking for ways to become profitable. Constantly looking over their shoulders at the
competition, many “me too” decisions were being made that had little or no fit with their core business
model.

For every software project that made it to the “live site,” there seemed to be scores of unfinished ideas or
canceled initiatives that didn’t. What accounts for this wastefulness? First and foremost — there is a
disconnect between management as objective-setters, and software engineers as people who create software
to achieve a specific set of objectives. When this partnership breaks down, either party could be to blame.
A management team who can’t set course and clearly articulate the business objectives is going to be
continually frustrated by a software development group who, in an attempt to second-guess what the
objectives are, codes a bunch of stuff that may or may not be what the business needs.

On the other hand, a software development culture based on the hope that order will arise out of anarchy
will have a dubious track record of producing software that backs up management’s vision. In the early
days of a start up, the management visionary will literally sit next to the programmer and dictate
requirements straight into his ear. Unfortunately, this direct path from idea to code cannot scale up.

As organizations get larger, and more people start throwing ideas into the mix, it is of paramount
importance to develop a strong project chartering and evaluation process, whereby the management team —
accompanied by the top technical leaders of the firm, prioritize new projects and feature sets according to
their business value, cost and technical feasibility and time-sensitivity. Too many cooks in the kitchen
yields the type of site-suicide failures whereby marketing conjures up new products and features for which
the company has no ability to support either in the supply chain or in their customer service organization.

Bottom line: Institute a clear and consistent methodology for proposing new projects, evaluating them
against the business plan, estimating their cost and technical feasibility, time-sensitivity — and launch only
those projects that the company can handle, giving each initiative a running chance at success. Beware of
knee-jerk “me-too” initiatives. Don’t get caught up in the press and hype. If the latest “cool trend” on the
web doesn’t fit your business model — consider it carefully before jumping in.

Conclusion

During the rocketing rise of the NASDAQ in the winter of 1999/2000, I asked a colleague in the software
industry, “When will it stop?”

“When all of the foolish money has been spent,” he replied. Much like the California and Alaska gold
rushes, the dot-com revolution has changed the face of American business forever. Some people got
fabulously rich — many others got burned. Today, the average investor is in a far less speculative mood.
Perhaps it was a mistake to throw too much money at any given start-up at once. Some of them managed it
quite well. Others crashed and burned due to their own inexperience, lack of process, rush to market or
faulty business plan.

© 2000, Olympic Consulting Group. All rights reserved. Page 6 of 6

Moving forward, we have a lot to learn from the recent past. We can look back through thirty years of
software engineering and see the types of disciplines, skills sets and work environments that produced
reliable, robust software. We also saw legendary and spectacular failures in the pre-dot-com world —
whose projects share many of the same characteristics and causes that I just described. The remedies then,
and the remedies now are strikingly similar.

A modern e-commerce web site is a collection of integrated, complex applications. The browser portion is
only the piece visible to the public, but the background order fulfillment, inter-enterprise communication;
inventory and supply-chain management and customer billing systems are the heart and soul of the
operation. It takes discipline, experience, direction and focus to pull it off and do it right. The exuberance
of the younger generation should not be discouraged, however, the business domain and technical
architecture is far more complex than can be mastered in a few years of programming. It takes a mix of
seasoned professionals, providing framework and direction to prevent an organization from re-discovering,
re-inventing or simply ignoring the technical underpinnings of these complex software applications and
architectures.

About the author

David Ruble is an analyst, designer, author and educator. He is widely regarded as an expert in the field of
information modeling; object modeling and GUI (graphical user interface) design. He has been a principal
analyst and designer of many mission-critical client/server corporate information systems, e-commerce
systems, as well as applications in the public safety sector. As an educator, he has taught software
engineering techniques to hundreds of students throughout the United States. He is the author of the
popular book, Practical Analysis & Design for Client/server & GUI Systems, published by Prentice-Hall.
David is a Principal at Olympic Consulting Group).

About Olympic Consulting Group

Olympic Consulting Group (OCQG) is a full-service systems architecture and development firm. Located in
the heart of the Pacific Northwest's high-tech corridor, OCG provides analysis, design, development and
project management to a distinguished clientele, ranging from dot-coms to international manufacturing
companies. www.ocgworld.com

Selected Bibliography

Brooks, Frederick P., Jr. The Mythical Man Month, Essays on Software Engineering. Reading, Mass:
Addison-Wesley, 1975, 1995

Colkin, Fileen. “Venturing Outside of IT, Venture-capital firms are actively pursuing top IT executives to
help them make more-intelligent funding decisions.” cmp.com

Fishman, Charles. “They Write the Right Stuff.” Fast Company, Issue 6, p. 95

Ryan, Michael. “Digital Debacle.” Smart Business. November 2000, pp. 90-106

Scott, Alwyn. “Some Dot Coms Running on Empty.” The Seattle Times, October 8, 2000

© 2000, Olympic Consulting Group. All rights reserved. Page 7 of 7

http://www.ocgworld.com/

	Tough Medicine for the Dot-Com Culture
	Conquering the anarchy that plagued so many failed start-ups
	David Ruble
	November, 2000

	david.ruble@ocgworld.com
	Tough Medicine for the Dot-Com Culture
	Conquering the anarchy that plagued so many failed start-ups
	David Ruble
	Olympic Consulting Group
	November, 2000
	Problem 1: Viewing the site as a collection of web pages, rather than a complex suite of applications.
	Problem 2: Too many people, too little process
	Problem 3: “Time to market” thwarts all other ob
	Problem 4: Lack of direction, focus or vision
	Conclusion

